太阳能楼面光伏承重检测办理专业机构
光伏屋面结构承重安全性检测鉴定——以彩钢瓦屋面光伏承重安全性检测鉴定为例,检测鉴定内容如下:
太阳能光伏建筑一体化
光伏建筑一体化绝不是简单的光伏与建筑物的叠加,而是使光伏系统成为建筑物**组成的一部分。其中较关键的是光伏系统与建筑物无论是在设计上,还是在施工和制作以及安装上都要一体化,并在建筑完成后使用,后期经营管理要同步实施。并且作为建筑领域的新系统,光伏建筑一体化使得建筑物不仅具有传统建筑物的外围护的功能,还具有能产生能源供给建筑使用的功能,能满足节能、环保、安全、美观和经济实用的总体要求。
1、 钢构件尺寸与偏差
2、 钢构件缺陷、损伤与变形
3、 钢结构防腐涂料涂层厚度
4、 钢结构防火涂料涂层厚度
5、 钢梁跨中垂直度及侧向弯曲矢高测量
6、 钢构件倾斜
7、 钢构件锈蚀
8、 钢网架结构挠度
9、 钢网架构件壁厚减薄量
10、钢焊缝外观质量检测
11、焊缝质量超声波探伤
12、焊缝质量渗透探伤
13、金属板材超声波探伤
14、高强度大六角头螺栓连接副扭矩系数
15、扭剪型高强度螺栓连接副预拉力
16、结构承载力鉴定
光伏屋面结构承重安全性检测鉴定相关内容:
一、倾斜屋顶光伏系统
在倾斜屋顶上安装光伏系统主要有两种形式:一类是在屋顶上安装支架,将光伏组件铺设在支架上。这种系统通常要在屋顶上预埋固定件,如螺栓,并将支架通过连接件与螺栓固定。在安装的过程中要调整好组件的位置以保证整个屋面平整、美观。这类系统在安装时要注意支架与屋顶之间要预留一定的距离,保证良好的空气流动,以此来降低光伏组件的工作温度。在多数情况下,太阳能板会产生大量的热量,太阳能电池板的温度增加一度(以25"C为基准),其效率会相应减少0.3%’0.5%。屋顶与支架间预留一定的空间是很重要的,这样做也可以降低炎热季节的室内温度,保证室内环境的舒度倾斜屋顶光伏系统安装的第二类方式是:嵌入式结构,即将光伏系统作为建筑物的一部分替代某些建筑构件。这是一种新型结构,在建筑物设计之初就通过设计、计算,预先做好光伏组件的安装构件,并将组件的安装构件与建筑结构设计为一体,建好之后的光伏系统既具备普通建筑屋顶防雨、遮阳的功能,还可以发电。这样做的好处是,光伏系统的成本在建筑设计之初就包含在建材成本里,不需要在建筑物建好之后重新花费安装系统的费用。光伏系统的铺设与建筑主体同步设计、施工、安装,投入使用。光伏屋顶系统能较好的利用屋顶面积并且在结构上较安全、。
二、平屋顶(楼顶)光伏系统
在楼顶上安装光伏系统的分类方法亦是相同,一类是将平屋顶作为光伏系统支撑物。在屋顶上要预先安装生根或不生根筑起水泥条或水泥带,并在其中预埋地脚螺栓用于固定组件支架。平屋顶上安装的水泥条或水泥带需安置在建筑物的承重粱上,安装前要预先观测建筑物周围的环境,如较大风速、较高、较低温度等相关参数,通过设计计算出水泥条或水泥带的重量、体积并预埋好地脚螺栓。第二类是将光伏组件作为屋顶材料,如遮阳棚、大楼顶棚、天窗等。这类屋顶结构要求光伏组件既具备建筑材料的功用,又可以发电。对于光伏组件来说要求防雨、抗冲击,若作为建筑物天窗,这就要求光伏组件具备一定的透光性,多采用由双层玻璃构成的组件。若是作为装饰性的建筑物外观材料,还应该具备一定的美观性。与传统的太阳电池使用方式相比,光伏与建筑结合有许多优势:
(1)光伏与建筑结合可以节省一部分建材成本,通过结合,光伏组件可以起到装饰作用,增加建筑物的美观性。(2)可有效的利用阳光照射的空间。如上海市就有2亿m2的屋顶,假设1/10的屋顶用做光伏并网发电,每年可获得电力为34~47亿KWh。
(3)在夏季用电高峰时,光伏系统也正好吸收夏季强烈的太阳辐射,并转换成制冷设备所需要的电能,从而舒缓电力需求高峰时的供需矛盾。光伏建筑一体化将成为21世纪的市场热点,目前制约太阳电池发展的瓶颈仍然是生产成本过高,转换效率低,加上此行业法规政策仍不完善,光伏建筑系统在短期内还难以大规模普及。
屋顶光伏承载力检测鉴定不满足相关规范要求的,需要进行加固处理,以满足后续使用要求:
加固的特点和原则
加固的特点
1、根据已建工程受客观条件所约束, 针对具体现有条件进行加固设计和施工。
2、加固补强往往在不停产或尽量少停产的条件下施工, 要求施工速度快, 工期短。
3、施工现场狭窄、拥挤, 常受生产设备、管道和原有结构、构件的制约, 大型施工机械难以发挥作用。
4、施工常分段分期进行, 还会因各种干扰而中断。
5、清理、拆除工作量大, 工程繁琐复杂,并常常存在许多不安全因素。
加固的原则
1、从实际出发。
要根据对结构或构件的周密细致的性鉴定来确定加固的方案, 加固设计要考虑原结构和加固部分的实际受力情况。
2、消除隐患。
由于高温、腐蚀、冻融、振动、地基不均匀沉降等原因造成的结构损坏,加固时须考虑消除、减少或抵御这些不利因素的有效措施,以免加固后的结构继续受害, 避免二次加固。
3、有效利用。
尽量保留和利用有**的结构, 避免不必要的拆除, 若需拆除也应考虑对拆除材料的回收及重新利用的可能。
4、方便施工。
加固方案应切实可行, 安全, 尽量减少施工难度。
5、美观经济。
加固方案设计应充分考虑建筑美观, 尽量避免遗留加固痕迹。
加固结构的受力特征
加固结构的受力性能与未加固的普通结构有很大的区别。加固结构属二次受力结构, 加固前原结构已受力,尤其当结构因承载力不足进行加固时, 截面应力应变水平都很高, 新加部分在加固后并不立即分担荷载,而是在新增荷载下才开始受力。这样, 整个加固结构在其后的*二次载荷受力过程中, 新加部分的应力、应变始终滞后于原结构的累积应力、应变,当原结构达极限状态时, 新加部分应力、应变水平可能还很低, 破坏时, 新加部分可能达不到自身的极限状态。加固结构属二次组合结构, 新旧两部分整体工作、共同受力, 整体工作的关键, 主要取决于结合面的构造处理及施工方法,由于结合面硅的粘结强度一般远**硅本身强度, 在总体承载力上二次组合结构比一次整浇结构一般要低。对上述**种情况,加固时若进行卸载,则由于应力、应变滞后现象得以降低, 乃至消失, 破坏时新旧两部分就可进人各自的极限状态,结构的总体承载力可显着提高。对于上述*二种情况, 可以通过对原结构的表面处理如用粘结剂, 凿毛等, 焊接钢筋,采用微膨胀水泥等措施来改善新旧硷的结合状况, 使其达到共同作用。